MAT 540 QUIZ 4
MAT 540 Quiz 4
1.
In a
transportation problem, a demand constraint (the amount of product demanded at
a given destination) is a less-than-or equal-to constraint (≤).
2.
Product mix
problems cannot have "greater than or equal to" (≥)
constraints.
3.
A systematic
approach to model formulation is to first construct the objective function
before determining the decision variables.
4.
In a balanced
transportation model, supply equals demand such that all constraints can be
treated as equalities.
5.
When using a
linear programming model to solve the "diet" problem, the objective
is generally to maximize profit.
6.
Fractional
relationships between variables are permitted in the standard form of a linear
program.
7.
When
systematically formulating a linear program, the first step is
8. Let xij = gallons of component i used in gasoline j. Assume that we have
two components and two types of gasoline. There are 8,000 gallons of component
1 available, and the demand gasoline types 1 and 2 are 11,000 and 14,000
gallons respectively. Write the supply constraint for component 1.
9.
The following
types of constraints are ones that might be found in linear programming
formulations:
10. Assume that x2, x7 and x8 are the dollars invested in three different
common stocks from New York stock exchange. In order to diversify the
investments, the investing company requires that no more than 60% of the
dollars invested can be in "stock two". The constraint for
this requirement can be written as:
11. The production manager for the Softy soft drink company is considering the
production of 2 kinds of soft drinks: regular and diet. Two of her resources
are production time (8 hours = 480 minutes per day) and syrup (1 of the
ingredients) limited to 675 gallons per day. To produce a regular case requires
2 minutes and 5 gallons of syrup, while a diet case needs 4 minutes and 3
gallons of syrup. Profits for regular soft drink are $3.00 per case and profits
for diet soft drink are $2.00 per case. What is the time constraint?
12. The owner of Chips etc. produces 2 kinds of chips: Lime (L) and Vinegar
(V). He has a limited amount of the 3 ingredients used to produce these chips
available for his next production run: 4800 ounces of salt, 9600 ounces of
flour, and 2000 ounces of herbs. A bag of Lime chips requires 2 ounces of salt,
6 ounces of flour, and 1 ounce of herbs to produce; while a bag of Vinegar
chips requires 3 ounces of salt, 8 ounces of flour, and 2 ounces of herbs.
Profits for a bag of Lime chips are $0.40, and for a bag of Vinegar chips
$0.50.
What is the constraint for salt?
What is the constraint for salt?
13.
The owner of
Black Angus Ranch is trying to determine the correct mix of two types of beef
feed, A and B which cost 50 cents and 75 cents per pound, respectively.
Five essential ingredients are contained in the feed, shown in the table
below. The table also shows the minimum daily requirements of each
ingredient.
14.
Compared to
blending and product mix problems, transportation problems are unique because
15. In a portfolio problem, X1, X2, and X3 represent the number of shares
purchased of stocks 1, 2, an 3 which have selling prices of $15, $47.25, and
$110, respectively. The investor stipulates that stock 1 must not account for
more than 35% of the number of shares purchased. Which constraint is
correct?
16.
In a portfolio
problem, X1, X2, and X3 represent the number of shares purchased of stocks
1, 2, an 3 which have selling prices of $15, $47.25, and $110,
respectively. The investor has up to $50,000 to invest. The stockbroker
suggests limiting the investments so that no more than $10,000 is invested in
stock 2 or the total number of shares of stocks 2 and 3 does not exceed 350,
whichever is more restrictive. How would this be formulated as a linear
programming constraint?
17.
A systematic
approach to model formulation is to first
18. The production manager for the Softy soft drink company is considering the
production of 2 kinds of soft drinks: regular and diet. Two of her resources
are constraint production time (8 hours = 480 minutes per day) and syrup (1 of
her ingredient) limited to 675 gallons per day. To produce a regular case
requires 2 minutes and 5 gallons of syrup, while a diet case needs 4 minutes
and 3 gallons of syrup. Profits for regular soft drink are $3.00 per case and
profits for diet soft drink are $2.00 per case. What is the optimal daily profit?
19.
Quickbrush Paint
Company makes a profit of $2 per gallon on its oil-base paint and $3 per gallon
on its water-base paint. Both paints contain two ingredients, A and B. The
oil-base paint contains 90 percent A and 10 percent B, whereas the water-base
paint contains 30 percent A and 70 percent B. Quickbrush currently has 10,000
gallons of ingredient A and 5,000 gallons of ingredient B in inventory and
cannot obtain more at this time. The company wishes to use linear programming
to determine the appropriate mix of oil-base and water-base paint to produce to
maximize its total profit. How many gallons of water based paint should the
Quickbrush make? Note: Please express your answer as a whole number, rounding
the nearest whole number, if appropriate.
20.
Kitty Kennels
provides overnight lodging for a variety of pets. An attractive feature is the
quality of care the pets receive, including well balanced nutrition. The
kennel's cat food is made by mixing two types of cat food to obtain the
"nutritionally balanced cat diet." The data for the two cat foods are
as follows:
Kitty Kennels wants to be sure that the cats receive at least 5 ounces of protein and at least 3 ounces of fat per day. What is the cost of this plan? Express your answer with two places to the right of the decimal point. For instance, $9.32 (nine dollars and thirty-two cents) would be written as 9.32
Kitty Kennels wants to be sure that the cats receive at least 5 ounces of protein and at least 3 ounces of fat per day. What is the cost of this plan? Express your answer with two places to the right of the decimal point. For instance, $9.32 (nine dollars and thirty-two cents) would be written as 9.32
No comments:
Post a Comment